Mcmc Methods for Diffusion Bridges
نویسندگان
چکیده
We present and study a Langevin MCMC approach for sampling nonlinear diffusion bridges. The method is based on recent theory concerning stochastic partial differential equations (SPDEs) reversible with respect to the target bridge, derived by applying the Langevin idea on the bridge pathspace. In the process, a Random-Walk Metropolis algorithm and an Independence Sampler are also obtained. The novel algorithmic idea of the paper is that proposed moves for the MCMC algorithm are determined by discretising the SPDEs in the time direction using an implicit scheme, parameterised by θ ∈ [0, 1]. We show that the resulting infinite-dimensional MCMC sampler is well defined only if θ = 1/2, when the MCMC proposals have the correct quadratic variation. Previous Langevin-based MCMC methods used explicit schemes, corresponding to θ = 0. The significance of the choice θ = 1/2 is inherited by the finite-dimensional approximation of the algorithm used in practice. We present numerical results illustrating the phenomenon and the theory that explains it. Diffusion bridges (with additive noise) are representative of the family of laws defined as a change of measure from Gaussian distributions on arbitrary separable Hilbert spaces; the analysis in this paper can be readily extended to target laws from this family and an example from signal processing illustrates this fact.
منابع مشابه
Simulation of multivariate diffusion bridges
We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously proposed simulation method for one-dimensional bridges to the multi-variate setting. First a method of si...
متن کاملApplying diffusion-based Markov chain Monte Carlo
We examine the performance of a strategy for Markov chain Monte Carlo (MCMC) developed by simulating a discrete approximation to a stochastic differential equation (SDE). We refer to the approach as diffusion MCMC. A variety of motivations for the approach are reviewed in the context of Bayesian analysis. In particular, implementation of diffusion MCMC is very simple to set-up, even in the pres...
متن کاملDEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Estimation of Hyperbolic Diffusion Using MCMC Method
In this paper we propose a Bayesian method for estimating hyperbolic diffusion models. The approach is based on the Markov Chain Monte Carlo (MCMC) method after discretization via the Milstein scheme. Our simulation study shows that the hyperbolic diffusion exhibits many of the stylized facts about asset returns documented in the financial econometrics literature, such as a slowly declining aut...
متن کاملEstimation of Hyperbolic Diffusion using MCMC Method
In this paper we propose a Bayesian method for estimating hyperbolic diffusion models. The approach is based on the Markov Chain Monte Carlo (MCMC) method after discretization via the Milstein scheme. Our simulation study shows that the hyperbolic diffusion exhibits many of the stylized facts about asset returns documented in the financial econometrics literature, such as a slowly declining aut...
متن کاملUnderdamped Langevin MCMC: A non-asymptotic analysis
We study the underdamped Langevin diffusion when the log of the target distribution is smooth and strongly concave. We present a MCMC algorithm based on its discretization and show that it achieves ε error (in 2-Wasserstein distance) in O( √ d/ε) steps. This is a significant improvement over the best known rate for overdamped Langevin MCMC, which is O(d/ε) steps under the same smoothness/concav...
متن کامل